3,481 research outputs found

    Feasibility investigation, proposed subdivision at Waolani Avenue and Kauai Street, Puunui, Honolulu, Hawaii

    Get PDF
    Waolani Avenue and Kauai Street, Puunui, Honolulu, Hawaiitax map keys: 1-8-24:1 and 1-8-25:25Content: report, boring logs, consolidation test report, and master plan for grading and drainageErnest K. Hirata & Associate

    Sectioned images and surface models of a cadaver head with reference to botulinum neurotoxin injection

    Get PDF
    Background: The aim of this study is to elucidate the anatomical considerations with reference to botulinum neurotoxin type A (BTX) injection, on sectioned images and surface models, using Visible Korean. These can be used for medical education and clinical training in the field of facial surgery.Materials and methods: Serially sectioned images of the head were obtained from a cadaver. Significant anatomic structures in the sectioned images were outlined and assembled to create a surface model.Results: The PDF file (27.8 MB) of the stacked models can be accessed for free. The file can also be obtained from the authors by email. Using this file, important anatomical structures associated with the BTX injection can be investigated in the sectioned images. All surface models and stereoscopic structures related with theBTX injection are described in real time.Conclusions: We hope that these state-of-the-art sectioned images, outlined images, and surface models will assist students and trainees in acquiring a better understanding of the anatomy associated with the BTX injection

    Recursive formulas generating power moments of multi-dimensional Kloosterman sums and m-multiple power moments of Kloosterman sums

    No full text
    In this paper, we construct two binary linear codes associated with multi-dimensional and m-multiple power Kloosterman sums (for any fixed m) over the finite field Fq. Here q is a power of two. The former codes are dual to a subcode of the binary hyper-Kloosterman code. Then we obtain two recursive formulas for the power moments of multi-dimensional Kloosterman sums and for the m-multiple power moments of Kloosterman sums in terms of the frequencies of weights in the respective codes. This is done via Pless power moment identity and yields, in the case of power moments of multi-dimensional Kloosterman sums, much simpler recursive formulas than those associated with finite special linear groups obtained previously

    Numerical studies of the two- and three-dimensional gauge glass at low temperature

    Full text link
    We present results from Monte Carlo simulations of the two- and three-dimensional gauge glass at low temperature using the parallel tempering Monte Carlo method. Our results in two dimensions strongly support the transition being at T_c=0. A finite-size scaling analysis, which works well only for the larger sizes and lower temperatures, gives the stiffness exponent theta = -0.39 +/- 0.03. In three dimensions we find theta = 0.27 +/- 0.01, compatible with recent results from domain wall renormalization group studies.Comment: 7 pages, 10 figures, submitted to PR

    Orientations of two coupled molecules

    Full text link
    Orientation states of two coupled polar molecules controlled by laser pulses are studied theoretically. By varying the period of a series of periodically applied laser pulse, transition from regular to chaotic behavior may occur. Schmidt decomposition is used to measure the degree of entanglement. It is found that the entanglement can be enhanced by increasing the strength of laser pulse.Comment: 4 pages, 4 figures, to appear in Chem. Phys. Lett.(2004

    Direct and indirect orthotic management of medial compartment osteoarthritis of the knee

    Get PDF
    Osteoarthritis (OA) is a painful condition and affects approximately 80% of individuals by the age of 55 [1], with knee OA occurring two times more frequently than OA of the hand or hip [2].The condition is more prevalent in the medial compartment and restricts the daily lives of individuals due to pain and a lack of functional independence. Patients with medial compartment osteoarthritis often have a varus alignment, with the mechanical axis and load bearing passing through this compartment with a greater adduction moment leading to greater pain and progression of osteoarthritis [3]. Surgery for the condition is possible although in some cases, particularly younger patients or those not yet requiring surgery, clinical management remains a challenge. Before surgery is considered, however, conservative management is advocated, though no one treatment has been shown to be most effective, and there are few quality biomechanical or clinical studies. Of the conservative approaches the principal orthotic treatments are valgus knee braces and laterally wedged foot inlays. Studies of knee valgus bracing have consistently demonstrated an associated decreased pain and improved function [4], and greater confidence [5]. A laterally wedged foot inlay has a thicker lateral border and applies a valgus moment to the heel. It is theorised that by changing the position of the ankle and subtalar joints during weight-bearing [6] the lateral wedges may apply a valgus moment across the knee as well as the rearfoot, with the assumed reduction on load in the medial knee compartment [7]. However, there has been no study to directly compare these orthotic treatments in the same study. The aim of this research is to investigate the efficacy of valgus knee braces and laterally wedged foot inlays in reducing the varus knee moment

    High-quality hyperspectral reconstruction using a spectral prior

    Get PDF
    We present a novel hyperspectral image reconstruction algorithm, which overcomes the long-standing tradeoff between spectral accuracy and spatial resolution in existing compressive imaging approaches. Our method consists of two steps: First, we learn nonlinear spectral representations from real-world hyperspectral datasets; for this, we build a convolutional autoencoder, which allows reconstructing its own input through its encoder and decoder networks. Second, we introduce a novel optimization method, which jointly regularizes the fidelity of the learned nonlinear spectral representations and the sparsity of gradients in the spatial domain, by means of our new fidelity prior. Our technique can be applied to any existing compressive imaging architecture, and has been thoroughly tested both in simulation, and by building a prototype hyperspectral imaging system. It outperforms the state-of-the-art methods from each architecture, both in terms of spectral accuracy and spatial resolution, while its computational complexity is reduced by two orders of magnitude with respect to sparse coding techniques. Moreover, we present two additional applications of our method: hyperspectral interpolation and demosaicing. Last, we have created a new high-resolution hyperspectral dataset containing sharper images of more spectral variety than existing ones, available through our project website

    Practical Multiple Scattering for Rough Surfaces

    Get PDF
    Microfacet theory concisely models light transport over rough surfaces. Specular reflection is the result of single mirror reflections on each facet, while exact computation of multiple scattering is either neglected, or modeled using costly importance sampling techniques. Practical but accurate simulation of multiple scattering in microfacet theory thus remains an open challenge. In this work, we revisit the traditional V-groove cavity model and derive an analytical, cost-effective solution for multiple scattering in rough surfaces. Our kaleidoscopic model is made up of both real and virtual V-grooves, and allows us to calculate higher-order scattering in the microfacets in an analytical fashion. We then extend our model to include nonsymmetric grooves, allowing for additional degrees of freedom on the surface geometry, improving multiple reflections at grazing angles with backward compatibility to traditional normal distribution functions. We validate the accuracy of our model against ground-truth Monte Carlo simulations, and demonstrate its flexibility on anisotropic and textured materials. Our model is analytical, does not introduce significant cost and variance, can be seamless integrated in any rendering engine, preserves reciprocity and energy conservation, and is suitable for bidirectional methods
    corecore